Naive equality axiomatization.
| Function or value | Description | ||
|
Example
Evaluates to (``f(x)``,``y``).
Example
Throws System.Exception: dest_eq: not an equation.
|
||
|
|||
| Function or value | Description |
|
Example
Evaluates to
Example
Evaluates to `P(x) <=> Q(y)`.
|
|
Reflexivity and a variation of transitivity: \begin{align*} &\forall x.\ x = x \\ &\forall x\ y\ z.\ x = y \land x = z \Rightarrow y = z \end{align*} Symmetry follows by instantiating that axiom so that \(x\) and \(z\) are the same, then using reflexivity. |
|
Example
Evaluates to [`forall x1 x2 y1 y2. x1 = y1 /\ x2 = y2 ==> f(x1,x2) = f(y1,y2)`].
Example
Evaluates to [].
|
|
Example
Evaluates to [`forall x1 x2 x3 y1 y2 y3. x1 = y1 /\ x2 = y2 /\ x3 = y3 ==> P(x1,x2,x3) ==> P(y1,y2,y3)`].
Example
Evaluates to [].
|